Non Positively Curved Metric in the Space of Positive Definite Infinite Matrices

نویسنده

  • ESTEBAN ANDRUCHOW
چکیده

We introduce a Riemannian metric with non positive curvature in the (infinite dimensional) manifold Σ∞ of positive invertible operators of a Hilbert space H, which are scalar perturbations of Hilbert-Schmidt operators. The (minimal) geodesics and the geodesic distance are computed. It is shown that this metric, which is complete, generalizes the well known non positive metric for positive definite complex matrices. Moreover, these spaces of finite matrices are naturally imbedded in Σ∞.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning with Iwasawa Coordinates

Finding a good metric over the input space plays a fundamental role in machine learning. Most existing techniques assume the Mahalanobis metric without incorporating the geometry of Pn, the space of n×n symmetric positive-definite (SPD) matrices, which leads to difficulties in the optimization procedure used to learn the metric. In this paper, we introduce a novel algorithm to learn the Mahalan...

متن کامل

Gyrovector Spaces on the Open Convex Cone of Positive Definite Matrices

‎In this article we review an algebraic definition of the gyrogroup and a simplified version of the gyrovector space with two fundamental examples on the open ball of finite-dimensional Euclidean spaces‎, ‎which are the Einstein and M"{o}bius gyrovector spaces‎. ‎We introduce the structure of gyrovector space and the gyroline on the open convex cone of positive definite matrices and explore its...

متن کامل

Horoball Hulls and Extents in Positive Definite Space

The space of positive definite matrices P(n) is a Riemannian manifold with variable nonpositive curvature. It includes Euclidean space and hyperbolic space as submanifolds, and poses significant challenges for the design of algorithms for data analysis. In this paper, we develop foundational geometric structures and algorithms for analyzing collections of such matrices. A key technical contribu...

متن کامل

Non-linear ergodic theorems in complete non-positive curvature metric spaces

Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...

متن کامل

Log-Hilbert-Schmidt metric between positive definite operators on Hilbert spaces

This paper introduces a novel mathematical and computational framework, namely Log-Hilbert-Schmidt metric between positive definite operators on a Hilbert space. This is a generalization of the Log-Euclidean metric on the Riemannian manifold of positive definite matrices to the infinite-dimensional setting. The general framework is applied in particular to compute distances between covariance o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007